Sunday 25 June 2017

Moving Average Lösung

OR-Notes sind eine Reihe von einleitenden Bemerkungen zu Themen, die unter die breite Überschrift des Bereichs Operations Research (OR) fallen. Sie wurden ursprünglich von mir in einer einleitenden ODER-Kurs Ich gebe am Imperial College verwendet. Sie stehen nun für alle Studenten und Lehrer zur Verfügung, die an den folgenden Bedingungen interessiert sind. Eine vollständige Liste der Themen in OR-Notes finden Sie hier. Prognosebeispiel Prognosebeispiel 1996 UG-Prüfung Die Nachfrage nach einem Produkt in den letzten fünf Monaten ist nachfolgend dargestellt. Verwenden Sie einen zweimonatigen gleitenden Durchschnitt, um eine Prognose für die Nachfrage in Monat 6 zu generieren. Wenden Sie exponentielle Glättung mit einer Glättungskonstante von 0,9 an, um eine Prognose für die Nachfrage nach Nachfrage im Monat 6 zu generieren. Welche dieser beiden Prognosen bevorzugen Sie und warumDie zwei Monate in Bewegung Durchschnitt für die Monate zwei bis fünf ist gegeben durch: Die Prognose für den sechsten Monat ist nur der gleitende Durchschnitt für den Monat davor, dh der gleitende Durchschnitt für den Monat 5 m 5 2350. Beim Anwenden einer exponentiellen Glättung mit einer Glättungskonstante von 0,9 erhalten wir: Wie zuvor Die Prognose für Monat sechs ist nur der Durchschnitt für Monat 5 M 5 2386 Um die beiden Prognosen zu vergleichen, berechnen wir die mittlere quadratische Abweichung (MSD). Wenn wir dies tun, finden wir für den gleitenden Durchschnitt MSD (15 - 19) sup2 (18 - 23) sup2 (21 - 24) sup23 16,67 und für den exponentiell geglätteten Durchschnitt mit einer Glättungskonstante von 0,9 MSD (13 - 17) sup2 (16,60 - 19) sup2 (18,76 - 23) sup2 (22,58 - 24) sup24 10,44 Insgesamt sehen wir, dass die exponentielle Glättung die besten Prognosen für einen Monat liefert, da sie eine niedrigere MSD aufweist. Daher bevorzugen wir die Prognose von 2386, die durch exponentielle Glättung erzeugt wurde. Prognosebeispiel 1994 UG-Prüfung Die folgende Tabelle zeigt die Nachfrage nach einem neuen Aftershave in einem Geschäft für die letzten 7 Monate. Berechnen Sie einen zweimonatigen gleitenden Durchschnitt für die Monate zwei bis sieben. Was würden Sie Ihre Prognose für die Nachfrage in Monat acht Bewerben exponentielle Glättung mit einer Glättungskonstante von 0,1, um eine Prognose für die Nachfrage in Monat acht abzuleiten. Welche der beiden Prognosen für den Monat acht bevorzugen Sie und warum Der Ladenbesitzer glaubt, dass Kunden auf diese neue Aftershave von anderen Marken umschalten. Erläutern Sie, wie Sie dieses Schaltverhalten modellieren und die Daten anzeigen können, die Sie benötigen, um zu bestätigen, ob diese Umschaltung stattfindet oder nicht. Der zweimonatige Gleitender Durchschnitt für die Monate zwei bis sieben ist gegeben durch: Die Prognose für Monat acht ist nur der gleitende Durchschnitt für den Monat davor, dh der gleitende Durchschnitt für Monat 7 m 7 46. Anwendung exponentieller Glättung mit einer Glättungskonstante von 0,1 wir Erhalten: Wie vorher ist die Prognose für Monat acht gerade der Durchschnitt für Monat 7 M 7 31.11 31 (da wir keine gebrochene Nachfrage haben können). Um die beiden Prognosen zu vergleichen, berechnen wir die mittlere quadratische Abweichung (MSD). Wenn wir dies tun, finden wir, dass für den gleitenden Durchschnitt und für die exponentiell geglättete Durchschnitt mit einer Glättungskonstante von 0,1 Insgesamt sehen wir, dass die zwei Monate gleitenden Durchschnitt scheinen, um die besten einen Monat prognostiziert, da es eine niedrigere MSD hat. Daher bevorzugen wir die Prognose von 46, die durch die zwei Monate gleitenden Durchschnitt produziert wurde. Um das Switching zu untersuchen, müssten wir ein Markov-Prozeßmodell verwenden, bei dem die Zustandsmarken verwendet werden, und wir müssten anfängliche Zustandsinformationen und Kundenvermittlungswahrscheinlichkeiten (von Umfragen) benötigen. Wir müssten das Modell auf historischen Daten laufen lassen, um zu sehen, ob wir zwischen dem Modell und dem historischen Verhalten passen. Prognosebeispiel 1992 UG-Prüfung Die nachstehende Tabelle zeigt die Nachfrage nach einer bestimmten Rasierklinge in einem Geschäft für die letzten neun Monate. Berechnen Sie einen dreimonatigen gleitenden Durchschnitt für die Monate drei bis neun. Was wäre Ihre Prognose für die Nachfrage in Monat 10 Verwenden Sie exponentielle Glättung mit einer Glättungskonstante von 0,3, um eine Prognose für die Nachfrage in Monat zehn ableiten. Welche der beiden Prognosen für Monat zehn bevorzugen Sie und warum Der dreimonatige gleitende Durchschnitt für die Monate 3 bis 9 ist gegeben durch: Die Prognose für Monat 10 ist nur der gleitende Durchschnitt für den Monat vorher, dass also der gleitende Durchschnitt für Monat 9 m 9 20.33. Die Prognose für den Monat 10 ist also 20. Die Anwendung der exponentiellen Glättung mit einer Glättungskonstante von 0,3 ergibt sich wie folgt: Nach wie vor ist die Prognose für Monat 10 nur der Durchschnitt für Monat 9 M 9 18,57 19 (wie wir Kann nicht gebrochene Nachfrage). Um die beiden Prognosen zu vergleichen, berechnen wir die mittlere quadratische Abweichung (MSD). Wenn wir dies tun, finden wir, dass für den gleitenden Durchschnitt und für die exponentiell geglättete Durchschnitt mit einer Glättungskonstante von 0,3 Insgesamt sehen wir, dass der dreimonatige gleitende Durchschnitt scheint die besten einen Monat voraus Prognosen geben, wie es eine niedrigere MSD hat. Daher bevorzugen wir die Prognose von 20, die durch die drei Monate gleitenden Durchschnitt produziert wurde. Prognosebeispiel 1991 UG-Prüfung Die nachstehende Tabelle zeigt die Nachfrage nach einer bestimmten Marke von Faxgeräten in einem Kaufhaus in den letzten zwölf Monaten. Berechnen Sie die vier Monate gleitenden Durchschnitt für die Monate 4 bis 12. Was wäre Ihre Prognose für die Nachfrage in Monat 13 Wenden Sie exponentielle Glättung mit einer Glättungskonstante von 0,2, um eine Prognose für die Nachfrage in Monat 13 ableiten. Welche der beiden Prognosen für Monat 13 lieber und warum Welche anderen Faktoren, die in den obigen Berechnungen nicht berücksichtigt werden, können die Nachfrage nach dem Faxgerät im Monat 13 beeinflussen. Der viermonatige Gleitende Durchschnitt für die Monate 4 bis 12 ist gegeben durch: m 4 (23 19 15 12) 4 17,25 m 5 (27 23 19 15) 4 21 m 6 (30 27 23 19) 4 24,75 m 7 (32 30 27 23) 4 28 m 8 (33 32 30 27) 4 30,5 m 9 (37 33 32 30) 4 33 m 10 (41 37 33 32) 4 35,75 m 11 (49 41 37 33) 4 40 m 12 (58 49 41 37) 4 46,25 Die Prognose für den Monat 13 ist nur der gleitende Durchschnitt für den Monat zuvor, dh der gleitende Durchschnitt Für den Monat 12 m 12 46,25. Die Prognose für den Monat 13 ist also 46. Wenn wir eine exponentielle Glättung mit einer Glättungskonstante von 0,2 anwenden, erhalten wir: Wie vorher ist die Prognose für den Monat 13 nur der Durchschnitt für den Monat 12 M 12 38,618 39 (wie wir Kann nicht gebrochene Nachfrage). Um die beiden Prognosen zu vergleichen, berechnen wir die mittlere quadratische Abweichung (MSD). Wenn wir dies tun, finden wir, dass für den gleitenden Durchschnitt und für die exponentiell geglättete Durchschnitt mit einer Glättungskonstante von 0,2 Insgesamt sehen wir, dass die vier Monate gleitenden Durchschnitt scheint die besten einen Monat voraus Prognosen geben, wie es eine niedrigere MSD hat. Daher bevorzugen wir die Prognose von 46, die durch die vier Monate gleitenden Durchschnitt produziert wurde. Saisonale Nachfrage Werbung Preisänderungen, sowohl diese Marke und andere Marken allgemeine wirtschaftliche Situation neue Technologie Prognosebeispiel 1989 UG-Prüfung Die folgende Tabelle zeigt die Nachfrage nach einer bestimmten Marke von Mikrowellenherd in einem Kaufhaus in jedem der letzten zwölf Monate. Berechnen Sie für jeden Monat einen Sechsmonatsdurchschnitt. Was wäre Ihre Prognose für die Nachfrage in Monat 13 Verwenden Sie exponentielle Glättung mit einer Glättungskonstante von 0,7, um eine Prognose für die Nachfrage in Monat 13 ableiten. Welche der beiden Prognosen für den Monat 13 bevorzugen Sie und warum Jetzt können wir nicht berechnen, ein sechs Monat, bis wir mindestens 6 Beobachtungen haben - dh wir können nur einen solchen Durchschnitt ab dem 6. Monat berechnen. Daher haben wir: m 6 (34 32 30 29 31 27) 6 30,50 m 7 (36 34 32 30 29 31) 6 32,00 m 8 (35 36 34 32 30 29) 6 32,67 m 9 (37 35 36 34 32 30) 6 34,00 m 10 (39 37 35 36 34 32) 6 35,50 m 11 (40 39 37 35 36 34) 6 36,83 m 12 (42 40 39 37 35 36) 6 38,17 Die Prognose für den Monat 13 ist nur der gleitende Durchschnitt für die Monat vor, dh der gleitende Durchschnitt für Monat 12 m 12 38,17. Die Prognose für den 13. Monat ist also 38. Wenn wir eine exponentielle Glättung mit einer Glättungskonstante von 0,7 anwenden, erhalten wir: Problem-Statement: Für jedes der Modelle der Übung 3.1 und auch für die folgenden Modelle geben Sie an, ob es Ist (a) stationär (b) invertierbar. Lösung: Das sind alle ARMA-Modelle, so dass Stationarität genau dann gilt, wenn die Wurzeln der AR-Gleichung alle außerhalb des Einheitskreises liegen und Invertibilität genau dann, wenn die Wurzeln der MA-Gleichung außerhalb des Einheitskreises liegen. Hinweis: Die Autoren schreiben die ganze Zeit zu betonen, dass Sie die Mittel für diese Modelle nehmen müssen. Wir schreiben einfach Z t und nehmen an, dass alles gemein ist. Die Wurzel (en) der autoregressiven charakteristischen Gleichung ist (sind), außerhalb des Einheitskreises. Daher ist das Verfahren stationär. Die Wurzel (s) der gleitenden mittleren charakteristischen Gleichung bilden einen leeren Satz, so dass alle Wurzeln leer außerhalb des Einheitskreises sind. Anders ausgedrückt (in der Sprache, die in der Vorlesung verwendet wurde) gibt es keine Wurzeln von auf oder im Einheitskreis. Daher ist das Verfahren invertierbar. Die Wurzel (en) der autoregressiven charakteristischen Gleichung bilden eine leere Menge, so dass alle Wurzeln außerhalb des Einheitskreises leer sind. Anders ausgedrückt (in der Sprache, die in der Vorlesung verwendet wurde) gibt es keine Wurzeln von auf oder im Einheitskreis. Daher ist das Verfahren stationär. Die Wurzeln der gleitenden mittleren charakteristischen Gleichung können durch Factoring bestimmt werden: Beide Wurzeln liegen außerhalb des Einheitskreises. Daher ist das Verfahren invertierbar. Die Wurzel der autoregressiven charakteristischen Gleichung ist außerhalb des Einheitskreises. Daher ist das Verfahren stationär. Der gleitende Mitteloperator ist der gleiche wie in Modell 2, so dass der Prozess invertierbar ist. Die Wurzeln der autoregressiven charakteristischen Gleichung Der Modulquadrat dieser komplexen konjugierten Wurzeln liegt außerhalb des Einheitskreises. Daher ist das Verfahren stationär. (Man kann dies bestimmen, ohne die Wurzeln zu berechnen, sobald bekannt ist, daß die Wurzeln komplexe Konjugate sind.) Man erinnere sich, daß das Produkt der reziproken Wurzeln das Modul ist, das quadriert ist und gleich dem Koeffizienten von v 2 ist, und zwar 0,6, also der Modul Quadrat ist 10,6 gt 1.) Das Verfahren ist invertierbar wie in Modell 1. Die Wurzel der autoregressiven charakteristischen Gleichung ist auf dem Einheitskreis. Daher ist das Verfahren nicht stationär. Die Wurzel des Polynoms der gleitenden mittleren Eigenschaft ist v 2 außerhalb des Einheitskreises. Daher ist das Verfahren invertierbar. Die Wurzel der autoregressiven charakteristischen Gleichung ist auf dem Einheitskreis. Daher ist das Verfahren nicht stationär. Die Wurzeln der gleitenden mittleren charakteristischen Gleichung können durch Factoring bestimmt werden: Ich habe einen stetigen Wert, für den Id einen exponentiellen gleitenden Durchschnitt berechnen möchte. Normalerweise verwendet man nur die Standardformel dafür: wobei S n der neue Durchschnitt ist, Alpha das Alpha ist, Y die Stichprobe ist und S n-1 der vorherige Durchschnitt ist. Leider, aufgrund verschiedener Fragen habe ich nicht eine konsistente Probe Zeit. Ich kann wissen, dass ich höchstens sagen kann, einmal pro Millisekunde, aber aufgrund von Faktoren aus meiner Kontrolle, kann ich nicht in der Lage, eine Probe für mehrere Millisekunden zu einer Zeit zu nehmen. Eine wahrscheinlich häufiger Fall ist jedoch, dass ich einfache Probe ein wenig früh oder spät: anstelle der Probenahme bei 0, 1 und 2 ms. I-Probe bei 0, 0,9 und 2,1 ms. Ich erwarte, dass, ungeachtet der Verzögerungen, meine Abtastfrequenz weit, weit über der Nyquist-Grenze liegen wird, und daher brauche ich mir keine Sorgen um Aliasing. Ich vermute, dass ich dies in einer mehr oder weniger vernünftigen Weise durch die Änderung der alpha passend, basierend auf der Länge der Zeit seit der letzten Probe. Ein Teil meiner Überlegung, dass dies funktionieren wird, ist, dass die EMA linear zwischen dem vorherigen Datenpunkt und dem aktuellen interpoliert. Wenn wir die Berechnung einer EMA der folgenden Liste von Proben in Intervallen t: 0,1,2,3,4 betrachten. Wir sollten das gleiche Ergebnis erhalten, wenn wir das Intervall 2t verwenden, bei dem die Eingänge 0,2,4 werden. Wenn die EMA davon ausgegangen ist, dass bei t 2 der Wert 2 seit t 0 war. Das wäre das gleiche wie das Intervall t Berechnung Berechnung auf 0,2,2,4,4, die ihr nicht tun. Oder macht das überhaupt Sinn Kann mir jemand sagen, wie man das Alpha passend ändert Bitte zeigen Sie Ihre Arbeit. D. h. Zeigen Sie mir die Mathematik, die beweist, dass Ihre Methode wirklich das Richtige tut. Sie sollten nicht erhalten die gleiche EMA für verschiedene Eingabe. Denken Sie an EMA als Filter, ist das Sampling bei 2t äquivalent zu Down-Sampling, und der Filter wird einen anderen Ausgang zu geben. Dies ist mir klar, da 0,2,4 höherfrequente Komponenten als 0,1,2,3,4 enthält. Sofern die Frage ist, wie kann ich ändern Sie den Filter on the fly, damit es die gleiche Ausgabe. Vielleicht fehle ich etwas ndash freespace Aber der Eingang ist nicht anders, it39s nur selten abgetastet. 0,2,4 in Intervallen 2t ist wie 0,, 2,, 4 in Intervallen t, wobei die zeigt, dass die Probe ignoriert wird ndash Curt Sampson Jun 21 09 um 23:45 Diese Antwort auf meinem guten Verständnis von Tiefpass Filter (exponentiell gleitenden Durchschnitt ist wirklich nur ein einpoliges Tiefpassfilter), aber mein dunstiges Verständnis dessen, was Sie suchen. Ich denke, das folgende ist, was Sie wollen: Erstens können Sie Ihre Gleichung ein wenig zu vereinfachen (sieht komplizierter, aber es ist einfacher in Code). Im gehend, Y für Ausgang und X für Eingang zu verwenden (anstelle von S für Ausgang und Y für Eingang, wie Sie getan haben). Zweitens ist der Wert von alpha hier gleich 1-e - Deltattau, wobei Deltat die Zeit zwischen den Abtastwerten ist und tau die Zeitkonstante des Tiefpaßfilters ist. Ich sage gleich in Anführungszeichen, weil dies gut funktioniert, wenn Deltattau ist klein im Vergleich zu 1, und alpha 1-e - Deltattau asymp Deltattau. (Aber nicht zu klein: youll laufen in Quantisierungsprobleme, und wenn Sie nicht auf einige exotische Techniken zurückgreifen, benötigen Sie normalerweise eine zusätzliche N Bits Auflösung in Ihrer Zustandsvariable S, wo N-Log 2 (alpha).) Für größere Werte von Deltattau Beginnt der Filtereffekt zu verschwinden, bis Sie zu dem Punkt kommen, an dem Alpha in der Nähe von 1 liegt, und Sie haben grundsätzlich nur den Eingang der Ausgabe zugewiesen. Dies sollte ordnungsgemäß mit unterschiedlichen Werten von Deltat funktionieren (die Variation von Deltat ist nicht sehr wichtig, solange alpha klein ist, sonst laufen Sie in einige ziemlich seltsame Nyquist Fragen Aliasing etc.), und wenn Sie arbeiten an einem Prozessor, wo Multiplikation Ist billiger als Division, oder Festkomma-Probleme sind wichtig, vorberechnen Omega-1tau, und erwägen zu versuchen, die Formel für Alpha approximieren. Wenn Sie wirklich wissen wollen, wie Sie die Formel alpha 1-e - Deltattau herleiten, dann betrachten wir die Differentialgleichungsquelle: die, wenn X eine Einheitsschrittfunktion ist, die Lösung Y 1 - e - ttau hat. Für kleine Werte von Deltat kann das Derivat durch DeltaYDeltat angenähert werden, was Ytau DeltaYDeltat X DeltaY (XY) (Deltattau) alpha (XY) ergibt und die Extrapolation von alpha 1-e - Deltattau kommt von dem Versuch, Einheit Schritt Funktion Fall. Würden Sie bitte erläutern, auf die Quottrying, um das Verhaltenquot Teil Match Ich verstehe Ihre kontinuierliche Zeit-Lösung Y 1 - exp (-t47) und seine Verallgemeinerung auf eine skalierte Schrittfunktion mit der Größe x und Anfangszustand y (0). Aber I39m nicht sehen, wie diese Ideen zusammen, um Ihr Ergebnis zu erzielen. Ndash Rhys Ulerich May 4 13 at 22:34 Dies ist keine vollständige Antwort, aber kann der Anfang von einem sein. Seine so weit wie ich mit diesem in einer Stunde oder so zu spielen Im Posting es als ein Beispiel für das, was Im Suchen, und vielleicht eine Inspiration für andere, die an dem Problem. Ich beginne mit S 0. Was der Mittelwert ist, der sich aus dem vorherigen Mittelwert S -1 und dem Abtastwert Y 0 bei t 0 ergibt. (T & sub1; - t & sub0;) ist mein Abtastintervall und & alpha; ist auf das eingestellt, was für dieses Abtastintervall und den Zeitraum, über den ich den Durchschnitt wünsche, geeignet ist. Ich überlegte, was passiert, wenn ich die Probe bei t 1 vermisse und stattdessen mit der mit t 2 getroffenen Probe Y 2 zu tun habe. Nun können wir mit der Erweiterung der Gleichung beginnen, um zu sehen, was passiert wäre, wenn wir gehabt hätten. Y 1: Ich bemerke, dass die Reihe unendlich auf diese Weise zu erweitern scheint, weil wir die S n auf der rechten Seite unendlich ersetzen können: Ok , Also sein nicht wirklich ein Polynom (albernes me), aber, wenn wir den Anfangsbegriff durch eins multiplizieren, sehen wir dann ein Muster: Hm: es ist eine exponentielle Reihe. Quelle Überraschung Stellen Sie sich vor, dass kommen aus der Gleichung für einen exponentiellen gleitenden Durchschnitt Also irgendwie habe ich diese x 0 x 1 x 2 x 3. Ding gehen, und Im sicher Im riechen e oder einen natürlichen Logarithmus treten hier herum, aber ich kann mich nicht erinnern, wo ich als nächstes ging, bevor ich aus der Zeit lief. Jede Antwort auf diese Frage oder ein Korrektheitsnachweis einer solchen Antwort hängt stark von den Daten ab, die Sie messen. Wenn Ihre Proben bei t 0 0ms genommen wurden. T 1 0,9 ms und t 2 2,1 ms. Aber Ihre Alpha-Auswahl basiert auf 1-ms-Intervallen, weshalb Sie ein lokal angepasstes Alpha n wünschen. Der Beweis der Korrektheit der Wahl würde bedeuten, die Probenwerte bei t1ms und t2ms zu kennen. Dies führt zu der Frage: Können Sie Ihre Daten resonable interpolieren, um vernünftige Vermutungen, was in-between Werte haben könnte Oder können Sie sogar den Durchschnitt selbst interpolieren Wenn keiner von diesen möglich ist, dann soweit ich es sehe, die logische Die Wahl eines Zwischenwerts Y (t) ist der zuletzt berechnete Durchschnitt. D. h. Y (t) Asymp S n, wobei n maxmial ist, so dass t n ltt. Diese Wahl hat eine einfache Konsequenz: Lassen Sie alpha allein, egal was der Zeitunterschied war. Wenn auf der anderen Seite ist es möglich, Ihre Werte zu interpolieren, dann geben Sie Ihnen averagable Konstanten-Intervall-Samples. Schließlich, wenn sein sogar möglich ist, den Durchschnitt selbst zu interpolieren, würde das die Frage bedeutungslos machen. Ich glaube, ich kann meine Daten zu interpolieren: angesichts der Tatsache, dass I39m es in diskreten Intervallen, I39m, die dies bereits mit einem Standard-EMA Anytime tun, davon ausgehen, dass ich brauche Dass es funktioniert sowie eine Standard-EMA, die auch hat ein falsches Ergebnis zu produzieren, wenn die Werte nicht ändern, ziemlich gleichmäßig zwischen Sample-Perioden. Ndash Curt Sampson Aber das ist, was ich sagen: Wenn Sie die EMA eine Interpolation Ihrer Werte, you39re getan, wenn Sie verlassen Alpha, wie es ist (weil das Einfügen der jüngsten Durchschnitt, wie Y doesn39t ändern den Durchschnitt) . Wenn Sie sagen, dass Sie etwas brauchen, dass Zehnarbeit sowie ein Standard-EMAquot - was ist falsch mit dem Original Wenn Sie nicht mehr Informationen über die Daten, die Sie gemessen haben, werden alle lokalen Anpassungen an Alpha am besten willkürlich sein. Ndash balpha 9830 Jun 21 09 at 15:31 Ich würde den Alpha-Wert allein zu verlassen, und füllen Sie die fehlenden Daten. Da Sie nicht wissen, was während der Zeit geschieht, wenn Sie Probe nicht können, können Sie diese Proben mit 0s füllen, oder halten Sie den vorherigen Wert stabil und verwenden Sie diese Werte für die EMA. Oder eine Rückwärtsinterpolation, sobald Sie ein neues Sample haben, die fehlenden Werte ausfüllen und die EMA neu berechnen. Was ich versuche zu bekommen ist, haben Sie eine Eingabe xn, die Löcher hat. Es gibt keine Möglichkeit, um die Tatsache, dass Sie Daten fehlen. Sie können also einen Halten nullter Ordnung verwenden oder auf null setzen oder eine Art von Interpolation zwischen xn und xnM. Wobei M die Anzahl der fehlenden Proben und n der Beginn der Lücke ist. Eventuell sogar mit Werten vor n. Ich denke, dass nur Variieren der Alpha tatsächlich geben mir die richtige Interpolation zwischen den beiden Punkten, die Sie sprechen, aber in einer Viel einfacher Weg. Darüber hinaus denke ich, dass die Veränderung der Alpha wird auch ordnungsgemäß befassen sich mit Proben, die zwischen den Standard-Probenahme Intervalle. Mit anderen Worten, I39m auf der Suche nach dem, was Sie beschrieben, aber versuchen, Mathematik, um herauszufinden, die einfache Möglichkeit, es zu tun. Ndash Curt Sampson Ich glaube nicht, es gibt so ein Biest wie quotproper Interpolationquot. Sie wissen einfach nicht, was in der Zeit passiert ist, die Sie nicht probieren. Gute und schlechte Interpolation impliziert etwas Wissen, was Sie verpasst haben, da Sie messen müssen, um zu beurteilen, ob eine Interpolation gut oder schlecht ist. Obwohl dies gesagt, können Sie Begrenzungen, dh mit maximaler Beschleunigung, Geschwindigkeit, etc. zu setzen. Ich denke, wenn Sie wissen, wie die fehlenden Daten Modell, dann würden Sie nur Modell die fehlenden Daten, dann wenden Sie den EMA-Algorithmus ohne Veränderung eher Als das Ändern von alpha. Just my 2c :) ndash freespace Das ist genau das, was ich in meiner Beantwortung der Frage vor 15 Minuten: quotYou einfach don39t wissen, was passiert in der Zeit, die Sie nicht Stichproben, aber that39s true Auch wenn Sie in jedem bestimmten Intervall Probe. So meine Nyquist-Kontemplation: Solange Sie wissen, die Wellenform doesn39t Richtungen ändern mehr als jedes Paar von Proben, die tatsächliche Probe-Intervall shouldn39t Angelegenheit, und sollte in der Lage sein zu variieren. Die EMA-Gleichung scheint mir genau so zu berechnen, als ob sich die Wellenform linear vom letzten Abtastwert zum aktuellen verändert hätte. Ndash Curt Sampson Ich glaube nicht, dass das stimmt. Das Nyquist39s-Theorem erfordert mindestens 2 Abtastwerte pro Periode, um das Signal eindeutig identifizieren zu können. Wenn Sie das nicht tun, erhalten Sie Aliasing. Es wäre das gleiche wie das Sampling als fs1 für eine Zeit, dann fs2, dann zurück zu fs1, und Sie erhalten Aliasing in die Daten, wenn Sie mit fs2 Probe, wenn fs2 ist unter dem Nyquist-Limit. Ich muss auch gestehen, ich verstehe nicht, was du meinst, durch Quotwellenformänderungen linear vom letzten Sample zum aktuellen onequot. Könnten Sie bitte erklären, Cheers, Steve. Ndash freespace Dies ist ähnlich wie ein offenes Problem auf meiner Todo-Liste. Ich habe ein Schema ausgearbeitet, zu einem gewissen Grad, aber haben keine mathematische Arbeit, um diese Anregung noch zu unterstützen. Update amp summary: Möchte den Glättungsfaktor (alpha) unabhängig vom Kompensationsfaktor behalten (was ich hier als beta beziehe). Jasons ausgezeichnete Antwort bereits akzeptiert hier funktioniert super für mich. Wenn Sie auch die Zeit seit der letzten Abtastung messen können (in gerundeten Vielfachen Ihrer konstanten Abtastzeit - also 7,8 ms, da die letzte Probe 8 Einheiten betragen würde), könnte dies dazu verwendet werden, die Glättung mehrfach anzuwenden. Wenden Sie in diesem Fall die Formel 8 mal an. Sie haben effektiv eine Glättung vorgespannt mehr auf den aktuellen Wert. Um eine bessere Glättung zu erhalten, müssen wir das Alpha zwicken, während wir die Formel 8 mal im vorherigen Fall anwenden. Was wird diese Glättungsnäherung verpassen Es hat bereits 7 Proben im obigen Beispiel verfehlt Das wurde in Schritt 1 mit einer abgeflachten Wiederanwendung des aktuellen Wertes zusätzlich 7 mal angenähert Wenn wir einen Approximationsfaktor beta definieren, der zusammen mit alpha angewendet wird (Als alphabeta statt nur alpha), gehen wir davon aus, dass sich die 7 verpassten Samples zwischen den vorherigen und den aktuellen Sample-Werten sanft veränderten. Ich habe darüber nachgedacht, aber ein wenig mucking about mit der Mathematik hat mich auf den Punkt, wo ich glaube, dass, anstatt die Anwendung der Formel achtmal mit dem Beispielwert, kann ich eine Berechnung zu tun Von einem neuen Alpha, das mir erlauben wird, die Formel einmal anzuwenden, und geben mir das gleiche Ergebnis. Ferner würde dies automatisch mit der Ausgabe von Proben, die von exakten Abtastzeitpunkten versetzt sind, behandelt. Ndash Curt Sampson Jun 21 09 at 13:47 Die einzige Anwendung ist in Ordnung. Was ich noch nicht sicher bin, ist, wie gut die Annäherung der 7 fehlenden Werte ist. Wenn die kontinuierliche Bewegung macht den Wert Jitter eine Menge über die 8 Millisekunden, die Annäherungen können ganz aus der Realität. Aber, wenn Sie Probenahme bei 1ms (höchste Auflösung ohne die verzögerten Proben) haben Sie bereits dachte der Jitter innerhalb von 1ms ist nicht relevant. Funktioniert diese Argumentation für Sie (ich versuche immer noch, mich zu überzeugen). Ndash nik Jun 21 09 at 14:08 Richtig. Das ist der Faktor Beta aus meiner Beschreibung. Ein Betafaktor würde basierend auf dem Differenzintervall und den aktuellen und vorherigen Abtastwerten berechnet. Das neue Alpha wird (Alphabet), aber es wird nur für diese Probe verwendet werden. Während Sie das Alpha in der Formel 39 zu haben scheinen, neige ich zu konstantem Alpha (Glättungsfaktor) und einem unabhängig berechneten Beta (einem Tuningfaktor), der die gerade ausgefallenen Samples kompensiert. Ndash nik Jun 21 09 at 15:23


No comments:

Post a Comment